= xse_resnext18()
tst = torch.randn(64, 3, 128, 128)
x = tst(x) y
XResnet
init_cnn
init_cnn (m)
XResNet
XResNet (block, expansion, layers, p=0.0, c_in=3, n_out=1000, stem_szs=(32, 32, 64), widen=1.0, sa=False, act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3, stride=2, groups=1, reduction=None, nh1=None, nh2=None, dw=False, g2=1, sym=False, norm_type=<NormType.Batch: 1>, pool=<function AvgPool>, pool_first=True, padding=None, bias=None, bn_1st=True, transpose=False, init='auto', xtra=None, bias_std=0.01, dilation:Union[int,Tuple[int,int]]=1, padding_mode:str='zeros', device=None, dtype=None)
*A sequential container.
Modules will be added to it in the order they are passed in the constructor. Alternatively, an OrderedDict
of modules can be passed in. The forward()
method of Sequential
accepts any input and forwards it to the first module it contains. It then “chains” outputs to inputs sequentially for each subsequent module, finally returning the output of the last module.
The value a Sequential
provides over manually calling a sequence of modules is that it allows treating the whole container as a single module, such that performing a transformation on the Sequential
applies to each of the modules it stores (which are each a registered submodule of the Sequential
).
What’s the difference between a Sequential
and a :class:torch.nn.ModuleList
? A ModuleList
is exactly what it sounds like–a list for storing [
Module](https://docs.fast.ai/torch_core.html#module)
s! On the other hand, the layers in a Sequential
are connected in a cascading way.
Example::
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))*
xresnet50_deeper
xresnet50_deeper (pretrained=False, **kwargs)
xresnet34_deeper
xresnet34_deeper (pretrained=False, **kwargs)
xresnet18_deeper
xresnet18_deeper (pretrained=False, **kwargs)
xresnet50_deep
xresnet50_deep (pretrained=False, **kwargs)
xresnet34_deep
xresnet34_deep (pretrained=False, **kwargs)
xresnet18_deep
xresnet18_deep (pretrained=False, **kwargs)
xresnet152
xresnet152 (pretrained=False, **kwargs)
xresnet101
xresnet101 (pretrained=False, **kwargs)
xresnet50
xresnet50 (pretrained=False, **kwargs)
xresnet34
xresnet34 (pretrained=False, **kwargs)
xresnet18
xresnet18 (pretrained=False, **kwargs)
xse_resnext50_deeper
xse_resnext50_deeper (n_out=1000, pretrained=False, **kwargs)
xse_resnext34_deeper
xse_resnext34_deeper (n_out=1000, pretrained=False, **kwargs)
xse_resnext18_deeper
xse_resnext18_deeper (n_out=1000, pretrained=False, **kwargs)
xse_resnext50_deep
xse_resnext50_deep (n_out=1000, pretrained=False, **kwargs)
xse_resnext34_deep
xse_resnext34_deep (n_out=1000, pretrained=False, **kwargs)
xse_resnext18_deep
xse_resnext18_deep (n_out=1000, pretrained=False, **kwargs)
xsenet154
xsenet154 (n_out=1000, pretrained=False, **kwargs)
xse_resnet152
xse_resnet152 (n_out=1000, pretrained=False, **kwargs)
xresnext101
xresnext101 (n_out=1000, pretrained=False, **kwargs)
xse_resnext101
xse_resnext101 (n_out=1000, pretrained=False, **kwargs)
xse_resnet101
xse_resnet101 (n_out=1000, pretrained=False, **kwargs)
xresnext50
xresnext50 (n_out=1000, pretrained=False, **kwargs)
xse_resnext50
xse_resnext50 (n_out=1000, pretrained=False, **kwargs)
xse_resnet50
xse_resnet50 (n_out=1000, pretrained=False, **kwargs)
xresnext34
xresnext34 (n_out=1000, pretrained=False, **kwargs)
xse_resnext34
xse_resnext34 (n_out=1000, pretrained=False, **kwargs)
xse_resnet34
xse_resnet34 (n_out=1000, pretrained=False, **kwargs)
xresnext18
xresnext18 (n_out=1000, pretrained=False, **kwargs)
xse_resnext18
xse_resnext18 (n_out=1000, pretrained=False, **kwargs)
xse_resnet18
xse_resnet18 (n_out=1000, pretrained=False, **kwargs)
= xresnext18()
tst = torch.randn(64, 3, 128, 128)
x = tst(x) y
= xse_resnet50()
tst = torch.randn(8, 3, 64, 64)
x = tst(x) y
= xresnet18(ndim=1, c_in=1, ks=15)
tst = torch.randn(64, 1, 128)
x = tst(x) y
= xresnext50(ndim=1, c_in=2, ks=31, stride=4)
tst = torch.randn(8, 2, 128)
x = tst(x) y
= xresnet18(ndim=3, c_in=3, ks=3)
tst = torch.randn(8, 3, 32, 32, 32)
x = tst(x) y