Vision augmentation

Transforms to apply data augmentation in Computer Vision
img = PILImage(PILImage.create(TEST_IMAGE).resize((600,400)))

RandTransform-


source

RandTransform

 RandTransform (p:float=1.0, nm:str=None, before_call:callable=None,
                **kwargs)

A transform that before_call its state at each __call__

Type Default Details
p float 1.0 Probability of applying Transform
nm str None
before_call callable None Optional batchwise preprocessing function
kwargs

As for all Transform you can pass encodes and decodes at init or subclass and implement them. You can do the same for the before_call method that is called at each __call__. Note that to have a consistent state for inputs and targets, a RandTransform must be applied at the tuple level.

By default the before_call behavior is to execute the transform with probability p (if subclassing and wanting to tweak that behavior, the attribute self.do, if it exists, is looked for to decide if the transform is executed or not).

Note

A RandTransform is only applied to the training set by default, so you have to pass split_idx=0 if you are calling it directly and not through a Datasets. That behavior can be changed by setting the attr split_idx of the transform to None.

RandTransform.before_call
<function __main__.RandTransform.before_call(self, b, split_idx: 'int')>

source

RandTransform.before_call

 RandTransform.before_call (b, split_idx:int)

This function can be overridden. Set self.do based on self.p

Type Details
b
split_idx int Index of the train/valid dataset
def _add1(x): return x+1
dumb_tfm = RandTransform(enc=_add1, p=0.5)
start,d1,d2 = 2,False,False
for _ in range(40):
    t = dumb_tfm(start, split_idx=0)
    if dumb_tfm.do: test_eq(t, start+1); d1=True
    else:           test_eq(t, start)  ; d2=True
assert d1 and d2
dumb_tfm
_add1 -- {'p': 0.5}:
encodes: (object,object) -> _add1decodes: 

Item transforms


source

FlipItem

 FlipItem (p:float=0.5)

Randomly flip with probability p

Calls @patch’d flip_lr behaviors for Image, TensorImage, TensorPoint, and TensorBBox

tflip = FlipItem(p=1.)
test_eq(tflip(bbox,split_idx=0), tensor([[1.,0., 0.,1]]) -1)

source

DihedralItem

 DihedralItem (p:float=1.0, nm:str=None, before_call:callable=None,
               **kwargs)

Randomly flip with probability p

Type Default Details
p float 1.0 Probability of applying Transform
nm str None
before_call callable None Optional batchwise preprocessing function
kwargs

Calls @patch’d dihedral behaviors for PILImage, TensorImage, TensorPoint, and TensorBBox

By default each of the 8 dihedral transformations (including noop) have the same probability of being picked when the transform is applied. You can customize this behavior by passing your own draw function. To force a specific flip, you can also pass an integer between 0 and 7.

_,axs = subplots(2, 4)
for ax in axs.flatten():
    show_image(DihedralItem(p=1.)(img, split_idx=0), ctx=ax)

Resize with crop, pad or squish


PadMode

 PadMode (*args, **kwargs)

All possible padding mode as attributes to get tab-completion and typo-proofing


source

CropPad

 CropPad (size:int|tuple, pad_mode:PadMode='zeros', **kwargs)

Center crop or pad an image to size

Type Default Details
size int | tuple Size to crop or pad to, duplicated if one value is specified
pad_mode PadMode zeros A PadMode

Calls @patch’d crop_pad behaviors for Image, TensorImage, TensorPoint, and TensorBBox

_,axs = plt.subplots(1,3,figsize=(12,4))
for ax,sz in zip(axs.flatten(), [300, 500, 700]):
    show_image(img.crop_pad(sz), ctx=ax, title=f'Size {sz}');
    print(img.crop_pad(sz).shape)
(300, 300)
(500, 500)
(700, 700)

_,axs = plt.subplots(1,3,figsize=(12,4))
for ax,mode in zip(axs.flatten(), [PadMode.Zeros, PadMode.Border, PadMode.Reflection]):
    show_image(img.crop_pad((600,700), pad_mode=mode), ctx=ax, title=mode);


source

RandomCrop

 RandomCrop (size:int|tuple, **kwargs)

Randomly crop an image to size

Type Details
size int | tuple Size to crop to, duplicated if one value is specified

source

OldRandomCrop

 OldRandomCrop (size:int|tuple, pad_mode:PadMode='zeros', enc=None,
                dec=None, split_idx=None, order=None)

Randomly crop an image to size

Type Default Details
size int | tuple Size to crop or pad to, duplicated if one value is specified
pad_mode PadMode zeros A PadMode
enc NoneType None
dec NoneType None
split_idx NoneType None
order NoneType None
_,axs = plt.subplots(1,3,figsize=(12,4))
f = RandomCrop(200)
for ax in axs: show_image(f(img), ctx=ax);

On the validation set, we take a center crop.

_,axs = plt.subplots(1,3,figsize=(12,4))
for ax in axs: show_image(f(img, split_idx=1), ctx=ax);


ResizeMethod

 ResizeMethod (*args, **kwargs)

All possible resize method as attributes to get tab-completion and typo-proofing

test_eq(ResizeMethod.Squish, 'squish')

source

Resize

 Resize (size:int|tuple, method:ResizeMethod='crop',
         pad_mode:PadMode='reflection', resamples=(<Resampling.BILINEAR:
         2>, <Resampling.NEAREST: 0>), **kwargs)

A transform that before_call its state at each __call__

Type Default Details
size int | tuple Size to resize to, duplicated if one value is specified
method ResizeMethod crop A ResizeMethod
pad_mode PadMode reflection A PadMode
resamples tuple (<Resampling.BILINEAR: 2>, <Resampling.NEAREST: 0>) Pillow Image resamples mode, resamples[1] for mask

size can be an integer (in which case images will be resized to a square) or a tuple. Depending on the method: - we squish any rectangle to size - we resize so that the shorter dimension is a match and use padding with pad_mode - we resize so that the larger dimension is match and crop (randomly on the training set, center crop for the validation set)

When doing the resize, we use resamples[0] for images and resamples[1] for segmentation masks.

_,axs = plt.subplots(1,3,figsize=(12,4))
for ax,method in zip(axs.flatten(), [ResizeMethod.Squish, ResizeMethod.Pad, ResizeMethod.Crop]):
    rsz = Resize(256, method=method)
    show_image(rsz(img, split_idx=0), ctx=ax, title=method);

On the validation set, the crop is always a center crop (on the dimension that’s cropped).

_,axs = plt.subplots(1,3,figsize=(12,4))
for ax,method in zip(axs.flatten(), [ResizeMethod.Squish, ResizeMethod.Pad, ResizeMethod.Crop]):
    rsz = Resize(256, method=method)
    show_image(rsz(img, split_idx=1), ctx=ax, title=method);


source

RandomResizedCrop

 RandomResizedCrop (size:int|tuple, min_scale:float=0.08, ratio=(0.75,
                    1.3333333333333333), resamples=(<Resampling.BILINEAR:
                    2>, <Resampling.NEAREST: 0>), val_xtra:float=0.14,
                    max_scale:float=1.0, **kwargs)

Picks a random scaled crop of an image and resize it to size

Type Default Details
size int | tuple Final size, duplicated if one value is specified,,
min_scale float 0.08 Minimum scale of the crop, in relation to image area
ratio tuple (0.75, 1.3333333333333333) Range of width over height of the output
resamples tuple (<Resampling.BILINEAR: 2>, <Resampling.NEAREST: 0>) Pillow Image resample mode, resamples[1] for mask
val_xtra float 0.14 The ratio of size at the edge cropped out in the validation set
max_scale float 1.0 Maximum scale of the crop, in relation to image area

The crop picked as a random scale in range (min_scale,max_scale) and ratio in the range passed, then the resize is done with resamples[0] for images and resamples[1] for segmentation masks. On the validation set, we center crop the image if it’s ratio isn’t in the range (to the minmum or maximum value) then resize.

crop = RandomResizedCrop(256)
_,axs = plt.subplots(3,3,figsize=(9,9))
for ax in axs.flatten():
    cropped = crop(img)
    show_image(cropped, ctx=ax);

test_eq(cropped.shape, [256,256])

Squish is used on the validation set, removing val_xtra proportion of each side first.

_,axs = subplots(1,3)
for ax in axs.flatten(): show_image(crop(img, split_idx=1), ctx=ax);

By setting max_scale to lower values, one can enforce small crops.

small_crop = RandomResizedCrop(256, min_scale=0.05, max_scale=0.15)
_,axs = plt.subplots(3,3,figsize=(9,9))
for ax in axs.flatten():
    cropped = small_crop(img)
    show_image(cropped, ctx=ax);


source

RatioResize

 RatioResize (max_sz:int, resamples=(<Resampling.BILINEAR: 2>,
              <Resampling.NEAREST: 0>), **kwargs)

Resizes the biggest dimension of an image to max_sz maintaining the aspect ratio

Type Default Details
max_sz int Biggest dimension of the resized image
resamples tuple (<Resampling.BILINEAR: 2>, <Resampling.NEAREST: 0>) Pillow Image resample mode, resamples[1] for mask
kwargs
RatioResize(256)(img)

Affine and coord tfm on the GPU

timg = TensorImage(array(img)).permute(2,0,1).float()/255.
def _batch_ex(bs): return TensorImage(timg[None].expand(bs, *timg.shape).clone())

Uses coordinates in coords to map coordinates in x to new locations for transformations such as flip. Preferably use TensorImage.affine_coord as this combines _grid_sample with F.affine_grid for easier usage. UseF.affine_grid to make it easier to generate the coords, as this tends to be large [H,W,2] where H and W are the height and width of your image x.

This is the image we start with, and are going to be using for the following examples.

img=torch.tensor([[[0,0,0],[1,0,0],[2,0,0]],
               [[0,1,0],[1,1,0],[2,1,0]],
               [[0,2,0],[1,2,0],[2,2,0]]]).permute(2,0,1)[None]/2.
show_images(img)

Here we _grid_sample, but do not change the original image. Notice how the coordinates in grid map to the coordiants in img.

grid=torch.tensor([[[[-1,-1],[0,-1],[1,-1]],
               [[-1,0],[0,0],[1,0]],
               [[-1,1],[0,1],[1,1.]]]])
img=_grid_sample(img, grid,align_corners=True)
show_images(img)

Next we do a flip by manually editing the grid.

grid=torch.tensor([[[1.,-1],[0,-1],[-1,-1]],
               [[1,0],[0,0],[-1,0]],
               [[1,1],[0,1],[-1,1]]])
img=_grid_sample(img, grid[None],align_corners=True)
show_images(img)

Next we shift the image up by one. By default _grid_sample uses reflection padding.

grid=torch.tensor([[[[-1,0],[0,0],[1,0]],
               [[-1,1],[0,1],[1,1]],
               [[-1,2],[0,2],[1,2.]]]]) 
img=_grid_sample(img, grid,align_corners=True)
show_images(img)

affine_coord allows us to much more easily work with images, by allowing us to specify much smaller mat, by comparison to grids, which require us to specify values for every pixel.


source

affine_grid

 affine_grid (theta:torch.Tensor, size:tuple, align_corners:bool=None)

Generates TensorFlowField from a transformation affine matrices theta

Type Default Details
theta Tensor Batch of affine transformation matrices
size tuple Output size
align_corners bool None PyTorch F.grid_sample align_corners

source

AffineCoordTfm

 AffineCoordTfm (aff_fs:callable|MutableSequence=None,
                 coord_fs:callable|MutableSequence=None,
                 size:int|tuple=None, mode='bilinear',
                 pad_mode='reflection', mode_mask='nearest',
                 align_corners=None, **kwargs)

Combine and apply affine and coord transforms

Calls @patch’d affine_coord behaviors for TensorImage, TensorMask, TensorPoint, and TensorBBox

Multiplies all the matrices returned by aff_fs before doing the corresponding affine transformation on a basic grid corresponding to size, then applies all coord_fs on the resulting flow of coordinates before finally doing an interpolation with mode and pad_mode.

Here are examples of how to use affine_coord on images. Including the identity or original image, a flip, and moving the image to the left.

imgs=_batch_ex(3)
identity=torch.tensor([[1,0,0],[0,1,0.]])
flip=torch.tensor([[-1,0,0],[0,1,0.]])
translation=torch.tensor([[1,0,1.],[0,1,0]])
mats=torch.stack((identity,flip,translation))
show_images(imgs.affine_coord(mats,pad_mode=PadMode.Zeros)) #Zeros easiest to see

Now you may be asking, “What is this mat”? Well lets take a quick look at the identify below.

imgs=_batch_ex(1)
identity=torch.tensor([[1,0,0],[0,1,0.]])
eye=identity[:,0:2]
bi=identity[:,2:3]
eye,bi
(tensor([[1., 0.],
         [0., 1.]]),
 tensor([[0.],
         [0.]]))

Notice the tensor ‘eye’ is an identity matrix. If we multiply this by a single coordinate in our original image x,y we will simply the same values returned for x and y. bi is added after this multiplication. For example, lets flip the image so the left top corner is in the right top corner:

t=torch.tensor([[-1,0,0],[0,1,0.]])
eye=t[:,0:2]
bi=t[:,2:3]
xy=torch.tensor([-1.,-1]) #upper left corner
torch.sum(xy*eye,dim=1)+bi[0] #now the upper right corner
tensor([ 1., -1.])

source

AffineCoordTfm.compose

 AffineCoordTfm.compose (tfm)

Compose self with another AffineCoordTfm to only do the interpolation step once


source

RandomResizedCropGPU

 RandomResizedCropGPU (size, min_scale=0.08, ratio=(0.75,
                       1.3333333333333333), mode='bilinear',
                       valid_scale=1.0, max_scale=1.0,
                       mode_mask='nearest', **kwargs)

Picks a random scaled crop of an image and resize it to size

Type Default Details
size Final size, duplicated if one value is specified
min_scale float 0.08 Minimum scale of the crop, in relation to image area
ratio tuple (0.75, 1.3333333333333333) Range of width over height of the output
mode str bilinear PyTorch F.grid_sample interpolation
valid_scale float 1.0 Scale of the crop for the validation set, in relation to image area
max_scale float 1.0 Maximum scale of the crop, in relation to image area
mode_mask str nearest Interpolation mode for TensorMask
kwargs
t = _batch_ex(8)
rrc = RandomResizedCropGPU(224, p=1.)
y = rrc(t)
_,axs = plt.subplots(2,4, figsize=(12,6))
for ax in axs.flatten():
    show_image(y[i], ctx=ax)

Note

RandomResizedCropGPU uses the same region for all images in the batch.

GPU helpers

This section contain helpers for working with augmentations on GPUs that is used throughout the code.


source

mask_tensor

 mask_tensor (x:torch.Tensor, p=0.5, neutral=0.0, batch=False)

Mask elements of x with neutral with probability 1-p

Type Default Details
x Tensor Input Tensor
p float 0.5 Probability of not applying mask
neutral float 0.0 Mask value
batch bool False Apply identical mask to entire batch

Lets look at some examples of how mask_tensor might be used, we are using clone() because this operation overwrites the input. For this example lets try using degrees for rotating an image.

with no_random():
    x=torch.tensor([60,-30,90,-210,270,-180,120,-240,150])
    print('p=0.5: ',mask_tensor(x.clone()))
    print('p=1.0: ',mask_tensor(x.clone(),p=1.))
    print('p=0.0: ',mask_tensor(x.clone(),p=0.))
p=0.5:  tensor([  60,  -30,   90, -210,    0, -180,    0,    0,  150])
p=1.0:  tensor([  60,  -30,   90, -210,  270, -180,  120, -240,  150])
p=0.0:  tensor([0, 0, 0, 0, 0, 0, 0, 0, 0])

Notice how p controls how likely a value is expected to be replaced with 0, or be unchanged since a 0 degree rotation would just be the original image. batch acts on the entire batch instead of single elements of the batch. Now lets consider a different example, of working with brightness. Note: with brightness 0 is a completely black image.

x=torch.tensor([0.6,0.4,0.3,0.7,0.4])
print('p=0.: ',mask_tensor(x.clone(),p=0))
print('p=0.,neutral=0.5: ',mask_tensor(x.clone(),p=0,neutral=0.5))
p=0.:  tensor([0., 0., 0., 0., 0.])
p=0.,neutral=0.5:  tensor([0.5000, 0.5000, 0.5000, 0.5000, 0.5000])

Here is would be very bad if we had a completely black image, as that is not an unchanged image. Instead we set neutral to 0.5 which is the value for an unchanged image for brightness.

_draw_mask is used to support the api of many following transformations to create mask_tensors. (p, neutral, batch) are passed down to mask_tensor. def_draw is the default draw function, and what should happen if no custom user setting is provided. draw is user defined behavior and can be a function, list of floats, or a float. draw and def_draw must return a tensor.

Here we use random integers from 1 to 8 for our def_draw, this example is very similar to Dihedral.

x = torch.zeros(10,2,3)
def def_draw(x):
    x=torch.randint(1,8, (x.size(0),))
    return x
with no_random(): print(torch.randint(1,8, (x.size(0),)))
with no_random(): print(_draw_mask(x, def_draw))
tensor([2, 3, 5, 6, 5, 4, 6, 6, 1, 1])
TensorBase([2, 0, 0, 6, 5, 4, 6, 0, 0, 1])

Next, there are three ways to define draw, as a constant, as a list, and as a function. All of these override def_draw, so that it has no effect on the final result.

with no_random():
    print('const: ',_draw_mask(x, def_draw, draw=1))
    print('list : ', _draw_mask(x, def_draw, draw=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))
    print('list : ',_draw_mask(x[0:2], def_draw, draw=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]))
    print('funct: ',_draw_mask(x, def_draw, draw=lambda x: torch.arange(1,x.size(0)+1)))
    try:
        _draw_mask(x, def_draw, draw=[1,2])
    except AssertionError as e:
        print(type(e),'\n',e)
const:  TensorBase([1., 1., 1., 1., 0., 1., 0., 0., 1., 1.])
list :  TensorBase([ 1.,  2.,  0.,  0.,  5.,  0.,  7.,  0.,  0., 10.])
list :  TensorBase([1., 0.])
funct:  TensorBase([ 1,  2,  3,  4,  0,  6,  7,  8,  9, 10])
<class 'AssertionError'> 
 

Note, when using a list it can be larger than the batch size, but it cannot be smaller than the batch size. Otherwise there would not be enough augmentations for elements of the batch.

x = torch.zeros(5,2,3)
def_draw = lambda x: torch.randint(0,8, (x.size(0),))
t = _draw_mask(x, def_draw)
assert (0. <= t).all() and (t <= 7).all() 
t = _draw_mask(x, def_draw, 1)
assert (0. <= t).all() and (t <= 1).all() 
test_eq(_draw_mask(x, def_draw, 1, p=1), tensor([1.,1,1,1,1]))
test_eq(_draw_mask(x, def_draw, [0,1,2,3,4], p=1), tensor([0.,1,2,3,4]))
test_eq(_draw_mask(x[0:3], def_draw, [0,1,2,3,4], p=1), tensor([0.,1,2]))
for i in range(5):
    t = _draw_mask(x, def_draw, 1,batch=True)
    assert (t==torch.zeros(5)).all() or (t==torch.ones(5)).all()

Flip/Dihedral GPU Helpers

affine_mat is used to transform the length-6 vestor into a [bs,3,3] tensor. This is used to allow us to combine affine transforms.


source

affine_mat

 affine_mat (*ms)

Restructure length-6 vector ms into an affine matrix with 0,0,1 in the last line

Here is an example of how flipping an image would look using affine_mat.

flips=torch.tensor([-1,1,-1])
ones=t1(flips)
zeroes=t0(flips)
affines=affine_mat(flips,zeroes,zeroes,zeroes,ones,zeroes)
print(affines)
tensor([[[-1,  0,  0],
         [ 0,  1,  0],
         [ 0,  0,  1]],

        [[ 1,  0,  0],
         [ 0,  1,  0],
         [ 0,  0,  1]],

        [[-1,  0,  0],
         [ 0,  1,  0],
         [ 0,  0,  1]]])

This is done so that we can combine multiple affine transformations without doing the math on the entire image. We need the matrices to be the same size, so we can do a matric multiple in order to combines affine transformations. While this is usually done on an entire batch, here is what it would look like to have multiple flip transformations for a single image. Since we flip twice we end up with an affine matrix that would simply return our original image.

If you would like more information on how this works, see affine_coord.

x = torch.eye(3,dtype=torch.int64)
for affine in affines: 
    x @= affine
    print(x)
tensor([[-1,  0,  0],
        [ 0,  1,  0],
        [ 0,  0,  1]])
tensor([[-1,  0,  0],
        [ 0,  1,  0],
        [ 0,  0,  1]])
tensor([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])

flip_mat will generate a [bs,3,3] tensor representing our flips for a batch with probability p. draw can be used to define a function, constant, or list that defines what flips to use. If draw is a list, the length must be greater than or equal to the batch size. For draw 0 is the original image, or 1 is a flipped image. batch will mean that the entire batch will be flipped or not.


source

flip_mat

Return a random flip matrix

Below are some examples of how to use draw as a constant, list and function.

with no_random():
    x=torch.randn(2,4,3)
    print('const: ',flip_mat(x, draw=1))
    print('list : ', flip_mat(x, draw=[1, 0]))
    print('list : ',flip_mat(x[0:2], draw=[1, 0, 1, 0, 1]))
    print('funct: ',flip_mat(x, draw=lambda x: torch.ones(x.size(0))))
    test_fail(lambda: flip_mat(x, draw=[1]))
const:  TensorBase([[[-1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]],

            [[ 1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]]])
list :  TensorBase([[[-1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]],

            [[ 1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]]])
list :  TensorBase([[[-1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]],

            [[ 1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]]])
funct:  TensorBase([[[ 1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]],

            [[-1.,  0.,  0.],
             [ 0.,  1.,  0.],
             [ 0.,  0.,  1.]]])
x = flip_mat(torch.randn(100,4,3))
test_eq(set(x[:,0,0].numpy()), {-1,1}) #might fail with probability 2*2**(-100) (picked only 1s or -1s)

Flip images,masks,points and bounding boxes horizontally. p is the probability of a flip being applied. draw can be used to define custom flip behavior.


source

Flip

 Flip (p=0.5, draw:int|MutableSequence|callable=None, size:int|tuple=None,
       mode:str='bilinear', pad_mode='reflection', align_corners=True,
       batch=False)

Randomly flip a batch of images with a probability p

Calls @patch’d flip_batch behaviors for TensorImage, TensorMask, TensorPoint, and TensorBBox

Here are some examples of using flip. Notice that a constant draw=1, is effectively the same as the default settings. Also notice the fine-tune control we can get in the third example, by setting p=1. and defining a custom draw.

with no_random(32):
    imgs = _batch_ex(5)
    deflt = Flip()
    const = Flip(p=1.,draw=1) #same as default
    listy = Flip(p=1.,draw=[1,0,1,0,1]) #completely manual!!!
    funct = Flip(draw=lambda x: torch.ones(x.size(0))) #same as default

    show_images( deflt(imgs) ,suptitle='Default Flip')
    show_images( const(imgs) ,suptitle='Constant Flip',titles=[f'Flipped' for i in['','','','','']]) #same above
    show_images( listy(imgs) ,suptitle='Listy Flip',titles=[f'{i}Flipped' for i in ['','Not ','','Not ','']])
    show_images( funct(imgs) ,suptitle='Flip By Function') #same as default

flip = Flip(p=1.)
t = _pnt2tensor([[1,0], [2,1]], (3,3))

y = flip(TensorImage(t[None,None]), split_idx=0)
test_eq(y, _pnt2tensor([[1,0], [0,1]], (3,3))[None,None])

pnts = TensorPoint((tensor([[1.,0.], [2,1]]) -1)[None])
test_eq(flip(pnts, split_idx=0), tensor([[[1.,0.], [0,1]]]) -1)

bbox = TensorBBox(((tensor([[1.,0., 2.,1]]) -1)[None]))
test_eq(flip(bbox, split_idx=0), tensor([[[0.,0., 1.,1.]]]) -1)

source

DeterministicDraw

 DeterministicDraw (vals)

Initialize self. See help(type(self)) for accurate signature.

t =  _batch_ex(8)
draw = DeterministicDraw(list(range(8)))
for i in range(15): test_eq(draw(t), torch.zeros(8)+(i%8))

source

DeterministicFlip

 DeterministicFlip (size:int|tuple=None, mode:str='bilinear',
                    pad_mode='reflection', align_corners=True, **kwargs)

Flip the batch every other call

Type Default Details
size int | tuple None Output size, duplicated if one value is specified
mode str bilinear PyTorch F.grid_sample interpolation
pad_mode str reflection A PadMode
align_corners bool True PyTorch F.grid_sample align_corners
kwargs

Next we loop through multiple batches of the example images. DeterministicFlip will first not flip the images, and then on the next batch it will flip the images.

b = _batch_ex(2)
dih = DeterministicFlip()
for i,flipped in enumerate(['Not Flipped','Flipped']*2):
    show_images(dih(b),suptitle=f'Batch {i}',titles=[flipped]*2)

Since we are working with squares and rectangles, we can think of dihedral flips as flips across the horizontal, vertical, and diagonal and their combinations. Remember though that rectangles are not symmetrical across their diagonal, so this will effectively cropping parts of rectangles.


source

dihedral_mat

Return a random dihedral matrix


source

Dihedral

 Dihedral (p=0.5, draw:int|MutableSequence|callable=None,
           size:int|tuple=None, mode:str='bilinear',
           pad_mode='reflection', batch=False, align_corners=True)

Apply a random dihedral transformation to a batch of images with a probability p

Calls @patch’d dihedral_batch behaviors for TensorImage, TensorMask, TensorPoint, and TensorBBox

draw can be specified if you want to customize which flip is picked when the transform is applied (default is a random number between 0 and 7). It can be an integer between 0 and 7, a list of such integers (which then should have a length equal to or greater than the size of the batch) or a callable that returns a long tensor between 0 and 7.

with no_random():
    imgs = _batch_ex(5)
    deflt = Dihedral()
    const = Dihedral(p=1.,draw=1) #same as flip_batch
    listy = Dihedral(p=1.,draw=[0,1,2,3,4]) #completely manual!!!
    funct = Dihedral(draw=lambda x: torch.randint(0,8,(x.size(0),))) #same as default

    show_images( deflt(imgs) ,suptitle='Default Flips',titles=[i for i in range(imgs.size(0))])
    show_images( const(imgs) ,suptitle='Constant Horizontal Flip',titles=[f'Flip 1' for i in [0,1,1,1,1]])
    show_images( listy(imgs) ,suptitle='Manual Listy Flips',titles=[f'Flip {i}' for i in [0,1,2,3,4]]) #manually specified, not random! 
    show_images( funct(imgs) ,suptitle='Default Functional Flips',titles=[i for i in range(imgs.size(0))]) #same as default


source

DeterministicDihedral

 DeterministicDihedral (size:int|tuple=None, mode:str='bilinear',
                        pad_mode='reflection', align_corners=None)

Apply a random dihedral transformation to a batch of images with a probability p

Type Default Details
size int | tuple None Output size, duplicated if one value is specified
mode str bilinear PyTorch F.grid_sample interpolation
pad_mode str reflection A PadMode
align_corners NoneType None PyTorch F.grid_sample align_corners

DeterministicDihedral guarantees that the first call will not be flipped, then the following call will be flip in a deterministic order. After all 7 possible dihedral flips the pattern will reset to the unflipped version. If we were to do this on a batch size of one it would look like this:

t = _batch_ex(10)
dih = DeterministicDihedral()
_,axs = plt.subplots(2,5, figsize=(14,6))
for i,ax in enumerate(axs.flatten()):
    y = dih(t)
    show_image(y[0], ctx=ax, title=f'Batch {i}')


source

rotate_mat

Return a random rotation matrix with max_deg and p


source

Rotate

 Rotate (max_deg:int=10, p:float=0.5,
         draw:int|MutableSequence|callable=None, size:int|tuple=None,
         mode:str='bilinear', pad_mode='reflection',
         align_corners:bool=True, batch:bool=False)

Apply a random rotation of at most max_deg with probability p to a batch of images

Calls @patch’d rotate behaviors for TensorImage, TensorMask, TensorPoint, and TensorBBox

draw can be specified if you want to customize which angle is picked when the transform is applied (default is a random float between -max_deg and max_deg). It can be a float, a list of floats (which then should have a length equal to or greater than the size of the batch) or a callable that returns a float tensor.

Rotate by default can only rotate 10 degrees, which makes the changes harder to see. This is usually combined with either flip or dihedral, which make much larger changes by default. A rotate of 180 degrees is the same as a vertical flip for example.

with no_random():
    thetas = [-30,-15,0,15,30]
    imgs = _batch_ex(5)
    deflt = Rotate()
    const = Rotate(p=1.,draw=180) #same as a vertical flip
    listy = Rotate(p=1.,draw=[-30,-15,0,15,30]) #completely manual!!!
    funct = Rotate(draw=lambda x: x.new_empty(x.size(0)).uniform_(-10, 10)) #same as default

    show_images( deflt(imgs) ,suptitle='Default Rotate, notice the small rotation',titles=[i for i in range(imgs.size(0))])
    show_images( const(imgs) ,suptitle='Constant 180 Rotate',titles=[f'180 Degrees' for i in range(imgs.size(0))])
    #manually specified, not random! 
    show_images( listy(imgs) ,suptitle='Manual List Rotate',titles=[f'{i} Degrees' for i in [-30,-15,0,15,30]])
    #same as default
    show_images( funct(imgs) ,suptitle='Default Functional Rotate',titles=[i for i in range(imgs.size(0))])


source

zoom_mat

Return a random zoom matrix with max_zoom and p


source

Zoom

 Zoom (min_zoom:float=1.0, max_zoom:float=1.1, p:float=0.5,
       draw:float|MutableSequence|callable=None,
       draw_x:float|MutableSequence|callable=None,
       draw_y:float|MutableSequence|callable=None, size:int|tuple=None,
       mode='bilinear', pad_mode='reflection', batch=False,
       align_corners=True)

Apply a random zoom of at most max_zoom with probability p to a batch of images

Calls @patch’d zoom behaviors for TensorImage, TensorMask, TensorPoint, and TensorBBox

draw, draw_x and draw_y can be specified if you want to customize which scale and center are picked when the transform is applied (default is a random float between 1 and max_zoom for the first, between 0 and 1 for the last two). Each can be a float, a list of floats (which then should have a length equal to or greater than the size of the batch) or a callable that returns a float tensor.

draw_x and draw_y are expected to be the position of the center in pct, 0 meaning the most left/top possible and 1 meaning the most right/bottom possible.

Note: By default Zooms are rather small.

with no_random():
    scales = [0.8, 1., 1.1, 1.25, 1.5]
    imgs = _batch_ex(5)
    deflt = Zoom()
    const = Zoom(p=1., draw=1.5) #'Constant scale and different random centers'
    listy = Zoom(p=1.,draw=scales,draw_x=0.5, draw_y=0.5) #completely manual scales, constant center
    funct = Zoom(draw=lambda x: x.new_empty(x.size(0)).uniform_(1., 1.1)) #same as default

    show_images( deflt(imgs) ,suptitle='Default Zoom, note the small zooming', titles=[i for i in range(imgs.size(0))])
    show_images( const(imgs) ,suptitle='Constant Scale, Valiable Position', titles=[f'Scale 1.5x' for i in range(imgs.size(0))])
    show_images( listy(imgs) ,suptitle='Manual Listy Scale, Centered', titles=[f'Scale {i}x' for i in scales])
    show_images( funct(imgs) ,suptitle='Default Functional Zoom', titles=[i for i in range(imgs.size(0))]) #same as default

Warping


source

find_coeffs

 find_coeffs (p1:torch.Tensor, p2:torch.Tensor)

Find coefficients for warp tfm from p1 to p2

Type Details
p1 Tensor Original points
p2 Tensor Target points

source

apply_perspective

 apply_perspective (coords:torch.Tensor, coeffs:torch.Tensor)

Apply perspective tranform on coords with coeffs

Type Details
coords Tensor Original coordinates
coeffs Tensor Warping transformation matrice

source

Warp

 Warp (magnitude:float=0.2, p:float=0.5,
       draw_x:float|MutableSequence|callable=None,
       draw_y:float|MutableSequence|callable=None, size:int|tuple=None,
       mode:str='bilinear', pad_mode='reflection', batch:bool=False,
       align_corners:bool=True)

Apply perspective warping with magnitude and p on a batch of matrices

Calls @patch’d warp behaviors for TensorImage, TensorMask, TensorPoint, and TensorBBox

draw_x and draw_y can be specified if you want to customize the magnitudes that are picked when the transform is applied (default is a random float between -magnitude and magnitude. Each can be a float, a list of floats (which then should have a length equal to or greater than the size of the batch) or a callable that returns a float tensor.

scales = [-0.4, -0.2, 0., 0.2, 0.4]
imgs=_batch_ex(5)
vert_warp = Warp(p=1., draw_y=scales, draw_x=0.)
horz_warp = Warp(p=1., draw_x=scales, draw_y=0.)
show_images( vert_warp(imgs) ,suptitle='Vertical warping', titles=[f'magnitude {i}' for i in scales])
show_images( horz_warp(imgs) ,suptitle='Horizontal warping', titles=[f'magnitude {i}' for i in scales])

Lighting transforms

Lighting transforms are transforms that effect how light is represented in an image. These don’t change the location of the object like previous transforms, but instead simulate how light could change in a scene. The simclr paper evaluates these transforms against other transforms for their use case of self-supurved image classification, note they use “color” and “color distortion” to refer to a combination of these transforms.


source

TensorImage.lighting

 TensorImage.lighting (x:fastai.torch_core.TensorImage, func)

Most lighting transforms work better in “logit space”, as we do not want to blowout the image by going over maximum or minimum brightness. Taking the sigmoid of the logit allows us to get back to “linear space.”

x=TensorImage(torch.tensor([.01* i for i in range(0,101)]))
f_lin= lambda x:(2*(x-0.5)+0.5).clamp(0,1) #blue line
f_log= lambda x:2*x #red line
plt.plot(x,f_lin(x),'b',x,x.lighting(f_log),'r');

The above graph shows the results of doing a contrast transformation in both linear and logit space. Notice how the blue linear plot has to be clamped, and we have lost information on how large 0.0 is by comparision to 0.2. While in the red plot the values curve, so we keep this relative information.

First we create a general SpaceTfm. This allows us compose multiple transforms together, so that we only have to convert to a space once, before doing multiple transforms. The space_fn must convert from rgb to a space, apply a function, and then convert back to rgb. fs should be list-like, and contain a functions that will be composed together.


source

SpaceTfm

 SpaceTfm (fs:callable|MutableSequence, space_fn:callable, **kwargs)

Apply fs to the logits

LightingTfm is a SpaceTfm that uses TensorImage.lighting to convert to logit space. Use this to limit images loosing detail when they become very dark or bright.


source

LightingTfm

 LightingTfm (fs:callable|MutableSequence, **kwargs)

Apply fs to the logits

Brightness refers to the amount of light on a scene. This can be zero in which the image is completely black or one where the image is completely white. This may be especially useful if you expect your dataset to have over or under exposed images.


source

Brightness

 Brightness (max_lighting:float=0.2, p:float=0.75,
             draw:float|MutableSequence|callable=None, batch=False)

Apply fs to the logits

Calls @patch’d brightness behaviors for TensorImage

draw can be specified if you want to customize the magnitude that is picked when the transform is applied (default is a random float between -0.5*(1-max_lighting) and 0.5*(1+max_lighting). Each can be a float, a list of floats (which then should have a length equal to or greater than the size of the batch) or a callable that returns a float tensor.

scales = [0.1, 0.3, 0.5, 0.7, 0.9]
y = _batch_ex(5).brightness(draw=scales, p=1.)
fig,axs = plt.subplots(1,5, figsize=(15,3))
for i,ax in enumerate(axs.flatten()):
    show_image(y[i], ctx=ax, title=f'scale {scales[i]}')

Contrast pushes pixels to either the maximum or minimum values. The minimum value for contrast is a solid gray image. As an example take a picture of a bright light source in a dark room. Your eyes should be able to see some detail in the room, but the photo taken should instead have much higher contrast, with all of the detail in the background missing to the darkness. This is one example of what this transform can help simulate.


source

Contrast

 Contrast (max_lighting=0.2, p=0.75,
           draw:float|MutableSequence|callable=None, batch=False)

Apply change in contrast of max_lighting to batch of images with probability p.

Calls @patch’d contrast behaviors for TensorImage

draw can be specified if you want to customize the magnitude that is picked when the transform is applied (default is a random float taken with the log uniform distribution between (1-max_lighting) and 1/(1-max_lighting). Each can be a float, a list of floats (which then should have a length equal to or greater than the size of the batch) or a callable that returns a float tensor.

scales = [0.65, 0.8, 1., 1.25, 1.55]
y = _batch_ex(5).contrast(p=1., draw=scales)
fig,axs = plt.subplots(1,5, figsize=(15,3))
for i,ax in enumerate(axs.flatten()): show_image(y[i], ctx=ax, title=f'scale {scales[i]}')


source

grayscale

 grayscale (x)

Tensor to grayscale tensor. Uses the ITU-R 601-2 luma transform.

The above is just one way to convert to grayscale. We chose this one because it was fast. Notice that the sum of the weight of each channel is 1.

f'{sum([0.2989,0.5870,0.1140]):.3f}'
'1.000'

source

Saturation

 Saturation (max_lighting:float=0.2, p:float=0.75,
             draw:float|MutableSequence|callable=None, batch:bool=False)

Apply change in saturation of max_lighting to batch of images with probability p.

Calls @patch’d saturation behaviors for TensorImage

scales = [0., 0.5, 1., 1.5, 2.0]
y = _batch_ex(5).saturation(p=1., draw=scales)
fig,axs = plt.subplots(1,5, figsize=(15,3))
for i,ax in enumerate(axs.flatten()): show_image(y[i], ctx=ax, title=f'scale {scales[i]}')

Saturation controls the amount of color in the image, but not the lightness or darkness of an image. If has no effect on neutral colors such as whites,grays and blacks. At zero saturation you actually get a grayscale image. Pushing saturation past one causes more neutral colors to take on any underlying chromatic color.

rgb2hsv, and hsv2rgb are utilities for converting to and from hsv space. Hsv space stands for hue,saturation, and value space. This allows us to more easily perform certain transforms.

torch.max(tensor([1]).as_subclass(TensorBase), dim=0)
torch.return_types.max(
values=TensorBase(1),
indices=TensorBase(0))

source

rgb2hsv

 rgb2hsv (img:torch.Tensor)

Converts a RGB image to an HSV image. Note: Will not work on logit space images.

Type Details
img Tensor Batch of images Tensorin RGB

source

hsv2rgb

 hsv2rgb (img:torch.Tensor)

Converts a HSV image to an RGB image.

Type Details
img Tensor Batch of images Tensor in HSV

Very similar to lighting which is done in logit space, hsv transforms are done in hsv space. We can compose any transforms that are done in hsv space.


source

HSVTfm

 HSVTfm (fs, **kwargs)

Apply fs to the images in HSV space

Calls @patch’d hsv behaviors for TensorImage

fig,axs=plt.subplots(figsize=(20, 4),ncols=5)
axs[0].set_ylabel('Hue')
for ax in axs:
    ax.set_xlabel('Saturation')
    ax.set_yticklabels([])
    ax.set_xticklabels([])

hsvs=torch.stack([torch.arange(0,2.1,0.01)[:,None].repeat(1,210),
                 torch.arange(0,1.05,0.005)[None].repeat(210,1),
                 torch.ones([210,210])])[None]
for ax,i in zip(axs,range(0,5)):
    if i>0: hsvs[:,2].mul_(0.80)
    ax.set_title('V='+'%.1f' %0.8**i)
    ax.imshow(hsv2rgb(hsvs)[0].permute(1,2,0))

For the Hue transform we are using hsv space instead of logit space. HSV stands for hue,saturation and value. Hue in hsv space just cycles through colors of the rainbow. Notices how there is no maximum, because the colors just repeat.

Above are some examples of Hue(H) and Saturation(S) at various Values(V). One property of note in HSV space is that V controls the color you get at minimum saturation when in HSV space.


source

Hue

 Hue (max_hue:float=0.1, p:float=0.75,
      draw:float|MutableSequence|callable=None, batch=False)

Apply change in hue of max_hue to batch of images with probability p.

Calls @patch’d hue behaviors for TensorImage

scales = [0.5, 0.75, 1., 1.5, 1.75]
y = _batch_ex(len(scales)).hue(p=1., draw=scales)
fig,axs = plt.subplots(1,len(scales), figsize=(15,3))
for i,ax in enumerate(axs.flatten()): show_image(y[i], ctx=ax, title=f'scale {scales[i]}')

RandomErasing

Random Erasing Data Augmentation. This variant, designed by Ross Wightman, is applied to either a batch or single image tensor after it has been normalized.


source

cutout_gaussian

 cutout_gaussian (x:torch.Tensor, areas:list)

Replace all areas in x with N(0,1) noise

Type Details
x Tensor Input image
areas list List of areas to cutout. Order rl,rh,cl,ch

Since this should be applied after normalization, we’ll define a helper to apply a function inside normalization.


source

norm_apply_denorm

 norm_apply_denorm (x:torch.Tensor, f:<built-infunctioncallable>,
                    nrm:<built-infunctioncallable>)

Normalize x with nrm, then apply f, then denormalize

Type Details
x Tensor Input Image
f callable Function to apply
nrm callable Normalization transformation
nrm = Normalize.from_stats(*imagenet_stats, cuda=False)
f = partial(cutout_gaussian, areas=[(100,200,100,200),(200,300,200,300)])
show_image(norm_apply_denorm(timg, f, nrm)[0]);


source

RandomErasing

 RandomErasing (p:float=0.5, sl:float=0.0, sh:float=0.3,
                min_aspect:float=0.3, max_count:int=1)

Randomly selects a rectangle region in an image and randomizes its pixels.

Type Default Details
p float 0.5 Probability of appying Random Erasing
sl float 0.0 Minimum proportion of erased area
sh float 0.3 Maximum proportion of erased area
min_aspect float 0.3 Minimum aspect ratio of erased area
max_count int 1 Maximum number of erasing blocks per image, area per box is scaled by count
tfm = RandomErasing(p=1., max_count=6)

_,axs = subplots(2,3, figsize=(12,6))
f = partial(tfm, split_idx=0)
for i,ax in enumerate(axs.flatten()): show_image(norm_apply_denorm(timg, f, nrm)[0], ctx=ax)

tfm = RandomErasing(p=1., max_count=6)

_,axs = subplots(2,3, figsize=(12,6))
f = partial(tfm, split_idx=0)
for i,ax in enumerate(axs.flatten()): show_image(norm_apply_denorm(timg, f, nrm)[0], ctx=ax)

tfm = RandomErasing(p=1., max_count=6)

_,axs = subplots(2,3, figsize=(12,6))
f = partial(tfm, split_idx=1)
for i,ax in enumerate(axs.flatten()): show_image(norm_apply_denorm(timg, f, nrm)[0], ctx=ax)

All together


source

setup_aug_tfms

 setup_aug_tfms (tfms)

Go through tfms and combines together affine/coord or lighting transforms

#Affine only
tfms = [Rotate(draw=10., p=1), Zoom(draw=1.1, draw_x=0.5, draw_y=0.5, p=1.)]
comp = setup_aug_tfms([Rotate(draw=10., p=1), Zoom(draw=1.1, draw_x=0.5, draw_y=0.5, p=1.)])
test_eq(len(comp), 1)
x = torch.randn(4,3,5,5)
test_close(comp[0]._get_affine_mat(x)[...,:2],tfms[0]._get_affine_mat(x)[...,:2] @ tfms[1]._get_affine_mat(x)[...,:2])
#We can't test that the ouput of comp or the composition of tfms on x is the same cause it's not (1 interpol vs 2 sp)
#Affine + lighting
tfms = [Rotate(), Zoom(), Warp(), Brightness(), Flip(), Contrast()]
comp = setup_aug_tfms(tfms)
aff_tfm,lig_tfm = comp
test_eq(len(aff_tfm.aff_fs+aff_tfm.coord_fs+comp[1].fs), 6)
test_eq(len(aff_tfm.aff_fs), 3)
test_eq(len(aff_tfm.coord_fs), 1)
test_eq(len(lig_tfm.fs), 2)

source

aug_transforms

 aug_transforms (mult:float=1.0, do_flip:bool=True, flip_vert:bool=False,
                 max_rotate:float=10.0, min_zoom:float=1.0,
                 max_zoom:float=1.1, max_lighting:float=0.2,
                 max_warp:float=0.2, p_affine:float=0.75,
                 p_lighting:float=0.75, xtra_tfms:list=None,
                 size:int|tuple=None, mode:str='bilinear',
                 pad_mode='reflection', align_corners=True, batch=False,
                 min_scale=1.0)

Utility func to easily create a list of flip, rotate, zoom, warp, lighting transforms.

Type Default Details
mult float 1.0 Multiplication applying to max_rotate,max_lighting,max_warp
do_flip bool True Random flipping
flip_vert bool False Flip vertically
max_rotate float 10.0 Maximum degree of rotation
min_zoom float 1.0 Minimum zoom
max_zoom float 1.1 Maximum zoom
max_lighting float 0.2 Maximum scale of changing brightness
max_warp float 0.2 Maximum value of changing warp per
p_affine float 0.75 Probability of applying affine transformation
p_lighting float 0.75 Probability of changing brightnest and contrast
xtra_tfms list None Custom Transformations
size int | tuple None Output size, duplicated if one value is specified
mode str bilinear PyTorch F.grid_sample interpolation
pad_mode str reflection A PadMode
align_corners bool True PyTorch F.grid_sample align_corners
batch bool False Apply identical transformation to entire batch
min_scale float 1.0 Minimum scale of the crop, in relation to image area

Random flip (or dihedral if flip_vert=True) with p=0.5 is added when do_flip=True. With p_affine we apply a random rotation of max_rotate degrees, a random zoom between min_zoom and max_zoom and a perspective warping of max_warp. With p_lighting we apply a change in brightness and contrast of max_lighting. Custom xtra_tfms can be added. size, mode and pad_mode will be used for the interpolation. max_rotate,max_lighting,max_warp are multiplied by mult so you can more easily increase or decrease augmentation with a single parameter.

tfms = aug_transforms(pad_mode='zeros', mult=2, min_scale=0.5)
y = _batch_ex(9)
for t in tfms: y = t(y, split_idx=0)
_,axs = plt.subplots(1,3, figsize=(12,3))
for i,ax in enumerate(axs.flatten()): show_image(y[i], ctx=ax)

tfms = aug_transforms(pad_mode='zeros', mult=2, batch=True)
y = _batch_ex(9)
for t in tfms: y = t(y, split_idx=0)
_,axs = plt.subplots(1,3, figsize=(12,3))
for i,ax in enumerate(axs.flatten()): show_image(y[i], ctx=ax)

Integration tests

Segmentation

camvid = untar_data(URLs.CAMVID_TINY)
fns = get_image_files(camvid/'images')
cam_fn = fns[0]
mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}'
def _cam_lbl(fn): return mask_fn
cam_dsrc = Datasets([cam_fn]*10, [PILImage.create, [_cam_lbl, PILMask.create]])
cam_tdl = TfmdDL(cam_dsrc.train, after_item=ToTensor(),
                 after_batch=[IntToFloatTensor(), *aug_transforms()], bs=9)
cam_tdl.show_batch(max_n=9, vmin=1, vmax=30)

Point targets

mnist = untar_data(URLs.MNIST_TINY)
mnist_fn = 'images/mnist3.png'
pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]])
def _pnt_lbl(fn)->None: return TensorPoint.create(pnts)
pnt_dsrc = Datasets([mnist_fn]*10, [[PILImage.create, Resize((35,28))], _pnt_lbl])
pnt_tdl = TfmdDL(pnt_dsrc.train, after_item=[PointScaler(), ToTensor()],
                 after_batch=[IntToFloatTensor(), *aug_transforms(max_warp=0)], bs=9)
pnt_tdl.show_batch(max_n=9)

Bounding boxes

coco = untar_data(URLs.COCO_TINY)
images, lbl_bbox = get_annotations(coco/'train.json')
idx=2
coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx]

def _coco_bb(x):  return TensorBBox.create(bbox[0])
def _coco_lbl(x): return bbox[1]
coco_dsrc = Datasets([coco_fn]*10, [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1)
coco_tdl = TfmdDL(coco_dsrc, bs=9, after_item=[BBoxLabeler(), PointScaler(), ToTensor(), Resize(256)],
                  after_batch=[IntToFloatTensor(), *aug_transforms()])

coco_tdl.show_batch(max_n=9)