Callback for RNN training
Callback that uses the outputs of language models to add AR and TAR regularization
ModelResetter
ModelResetter (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
Callback
that resets the model at each validation/training step
RNNCallback
RNNCallback (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
Save the raw and dropped-out outputs and only keep the true output for loss computation
RNNRegularizer
RNNRegularizer (alpha=0.0, beta=0.0)
Add AR and TAR regularization
rnn_cbs
rnn_cbs (alpha=0.0, beta=0.0)
All callbacks needed for (optionally regularized) RNN training