Vision data

Helper functions to get data in a DataLoaders in the vision application and higher class ImageDataLoaders

The main classes defined in this module are ImageDataLoaders and SegmentationDataLoaders, so you probably want to jump to their definitions. They provide factory methods that are a great way to quickly get your data ready for training, see the vision tutorial for examples.

Helper functions


source

get_grid

 get_grid (n:int, nrows:int=None, ncols:int=None, figsize:tuple=None,
           double:bool=False, title:str=None, return_fig:bool=False,
           flatten:bool=True, imsize:int=3, suptitle:str=None,
           sharex:"bool|Literal['none','all','row','col']"=False,
           sharey:"bool|Literal['none','all','row','col']"=False,
           squeeze:bool=True, width_ratios:Sequence[float]|None=None,
           height_ratios:Sequence[float]|None=None,
           subplot_kw:dict[str,Any]|None=None,
           gridspec_kw:dict[str,Any]|None=None)

Return a grid of n axes, rows by cols

Type Default Details
n int Number of axes in the returned grid
nrows int None Number of rows in the returned grid, defaulting to int(math.sqrt(n))
ncols int None Number of columns in the returned grid, defaulting to ceil(n/rows)
figsize tuple None Width, height in inches of the returned figure
double bool False Whether to double the number of columns and n
title str None If passed, title set to the figure
return_fig bool False Whether to return the figure created by subplots
flatten bool True Whether to flatten the matplot axes such that they can be iterated over with a single loop
imsize int 3 Size (in inches) of images that will be displayed in the returned figure
suptitle str None Title to be set to returned figure
sharex bool | Literal[‘none’, ‘all’, ‘row’, ‘col’] False
sharey bool | Literal[‘none’, ‘all’, ‘row’, ‘col’] False
squeeze bool True
width_ratios Sequence[float] | None None
height_ratios Sequence[float] | None None
subplot_kw dict[str, Any] | None None
gridspec_kw dict[str, Any] | None None
Returns (plt.Figure, plt.Axes) Returns just axs by default, and (fig, axs) if return_fig is set to True

This is used by the type-dispatched versions of show_batch and show_results for the vision application. The default figsize is (cols*imsize, rows*imsize+0.6). imsize is passed down to subplots. suptitle, sharex, sharey, squeeze, subplot_kw and gridspec_kw are all passed down to plt.subplots. If return_fig is True, returns fig,axs, otherwise just axs.


source

clip_remove_empty

 clip_remove_empty (bbox:fastai.vision.core.TensorBBox,
                    label:fastai.torch_core.TensorMultiCategory)

Clip bounding boxes with image border and remove empty boxes along with corresponding labels

Type Details
bbox TensorBBox Coordinates of bounding boxes
label TensorMultiCategory Labels of the bounding boxes

This is used in bb_pad

bb = TensorBBox([[-2,-0.5,0.5,1.5], [-0.5,-0.5,0.5,0.5], [1,0.5,0.5,0.75], [-0.5,-0.5,0.5,0.5], [-2, -0.5, -1.5, 0.5]])
bb,lbl = clip_remove_empty(bb, TensorMultiCategory([1,2,3,2,5]))
test_eq(bb, TensorBBox([[-1,-0.5,0.5,1.], [-0.5,-0.5,0.5,0.5], [-0.5,-0.5,0.5,0.5]]))
test_eq(lbl, TensorMultiCategory([1,2,2]))

source

bb_pad

 bb_pad (samples:list, pad_idx=0)

Function that collects samples of labelled bboxes and adds padding with pad_idx.

Type Default Details
samples list List of 3-tuples like (image, bounding_boxes, labels)
pad_idx int 0 Label that will be used to pad each list of labels

This is used in BBoxBlock

img1,img2 = TensorImage(torch.randn(16,16,3)),TensorImage(torch.randn(16,16,3))
bb1 = tensor([[-2,-0.5,0.5,1.5], [-0.5,-0.5,0.5,0.5], [1,0.5,0.5,0.75], [-0.5,-0.5,0.5,0.5]])
lbl1 = tensor([1, 2, 3, 2])
bb2 = tensor([[-0.5,-0.5,0.5,0.5], [-0.5,-0.5,0.5,0.5]])
lbl2 = tensor([2, 2])
samples = [(img1, bb1, lbl1), (img2, bb2, lbl2)]
res = bb_pad(samples)
non_empty = tensor([True,True,False,True])
test_eq(res[0][0], img1)
test_eq(res[0][1], tensor([[-1,-0.5,0.5,1.], [-0.5,-0.5,0.5,0.5], [-0.5,-0.5,0.5,0.5]]))
test_eq(res[0][2], tensor([1,2,2]))
test_eq(res[1][0], img2)
test_eq(res[1][1], tensor([[-0.5,-0.5,0.5,0.5], [-0.5,-0.5,0.5,0.5], [0,0,0,0]]))
test_eq(res[1][2], tensor([2,2,0]))

TransformBlocks for vision

These are the blocks the vision application provide for the data block API.


source

ImageBlock

 ImageBlock (cls:fastai.vision.core.PILBase=<class
             'fastai.vision.core.PILImage'>)

A TransformBlock for images of cls


source

MaskBlock

 MaskBlock (codes:list=None)

A TransformBlock for segmentation masks, potentially with codes

Type Default Details
codes list None Vocab labels for segmentation masks

PointBlock

A TransformBlock for points in an image


BBoxBlock

A TransformBlock for bounding boxes in an image


source

BBoxLblBlock

 BBoxLblBlock (vocab:list=None, add_na:bool=True)

A TransformBlock for labeled bounding boxes, potentially with vocab

Type Default Details
vocab list None Vocab labels for bounding boxes
add_na bool True Add NaN as a background class

If add_na is True, a new category is added for NaN (that will represent the background class).


source

ImageDataLoaders

 ImageDataLoaders (*loaders, path:str|pathlib.Path='.', device=None)

Basic wrapper around several DataLoaders with factory methods for computer vision problems

This class should not be used directly, one of the factory methods should be preferred instead. All those factory methods accept as arguments:

  • item_tfms: one or several transforms applied to the items before batching them
  • batch_tfms: one or several transforms applied to the batches once they are formed
  • bs: the batch size
  • val_bs: the batch size for the validation DataLoader (defaults to bs)
  • shuffle_train: if we shuffle the training DataLoader or not
  • device: the PyTorch device to use (defaults to default_device())

source

ImageDataLoaders.from_folder

 ImageDataLoaders.from_folder (path, train='train', valid='valid',
                               valid_pct=None, seed=None, vocab=None,
                               item_tfms=None, batch_tfms=None,
                               img_cls=<class
                               'fastai.vision.core.PILImage'>, bs:int=64,
                               val_bs:int=None, shuffle:bool=True,
                               device=None)

Create from imagenet style dataset in path with train and valid subfolders (or provide valid_pct)

Type Default Details
path str | pathlib.Path . Path to put in DataLoaders
train str train
valid str valid
valid_pct NoneType None
seed NoneType None
vocab NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

If valid_pct is provided, a random split is performed (with an optional seed) by setting aside that percentage of the data for the validation set (instead of looking at the grandparents folder). If a vocab is passed, only the folders with names in vocab are kept.

Here is an example loading a subsample of MNIST:

path = untar_data(URLs.MNIST_TINY)
dls = ImageDataLoaders.from_folder(path, img_cls=PILImageBW)
x,y = dls.one_batch()
test_eq(x.shape, [64, 1, 28, 28])

Passing valid_pct will ignore the valid/train folders and do a new random split:

dls = ImageDataLoaders.from_folder(path, valid_pct=0.2)
dls.valid_ds.items[:3]
[Path('/home/jhoward/.fastai/data/mnist_tiny/train/7/9307.png'),
 Path('/home/jhoward/.fastai/data/mnist_tiny/train/3/8241.png'),
 Path('/home/jhoward/.fastai/data/mnist_tiny/valid/3/8924.png')]

source

ImageDataLoaders.from_path_func

 ImageDataLoaders.from_path_func (path, fnames, label_func, valid_pct=0.2,
                                  seed=None, item_tfms=None,
                                  batch_tfms=None, img_cls=<class
                                  'fastai.vision.core.PILImage'>,
                                  bs:int=64, val_bs:int=None,
                                  shuffle:bool=True, device=None)

Create from list of fnames in paths with label_func

Type Default Details
path str | pathlib.Path . Path to put in DataLoaders
fnames
label_func
valid_pct float 0.2
seed NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

The validation set is a random subset of valid_pct, optionally created with seed for reproducibility.

Here is how to create the same DataLoaders on the MNIST dataset as the previous example with a label_func:

fnames = get_image_files(path)
def label_func(x): return x.parent.name
dls = ImageDataLoaders.from_path_func(path, fnames, label_func)

Here is another example on the pets dataset. Here filenames are all in an “images” folder and their names have the form class_name_123.jpg. One way to properly label them is thus to throw away everything after the last _:


source

ImageDataLoaders.from_path_re

 ImageDataLoaders.from_path_re (path, fnames, pat, valid_pct=0.2,
                                seed=None, item_tfms=None,
                                batch_tfms=None, img_cls=<class
                                'fastai.vision.core.PILImage'>, bs:int=64,
                                val_bs:int=None, shuffle:bool=True,
                                device=None)

Create from list of fnames in paths with re expression pat

Type Default Details
path str | pathlib.Path . Path to put in DataLoaders
fnames
pat
valid_pct float 0.2
seed NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

The validation set is a random subset of valid_pct, optionally created with seed for reproducibility.

Here is how to create the same DataLoaders on the MNIST dataset as the previous example (you will need to change the initial two / by a  on Windows):

pat = r'/([^/]*)/\d+.png$'
dls = ImageDataLoaders.from_path_re(path, fnames, pat)

source

ImageDataLoaders.from_name_func

 ImageDataLoaders.from_name_func (path:str|Path, fnames:list,
                                  label_func:callable, valid_pct=0.2,
                                  seed=None, item_tfms=None,
                                  batch_tfms=None, img_cls=<class
                                  'fastai.vision.core.PILImage'>,
                                  bs:int=64, val_bs:int=None,
                                  shuffle:bool=True, device=None)

Create from the name attrs of fnames in paths with label_func

Type Default Details
path str | Path Set the default path to a directory that a Learner can use to save files like models
fnames list A list of os.Pathlike’s to individual image files
label_func callable A function that receives a string (the file name) and outputs a label
valid_pct float 0.2
seed NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders
Returns DataLoaders

The validation set is a random subset of valid_pct, optionally created with seed for reproducibility. This method does the same as ImageDataLoaders.from_path_func except label_func is applied to the name of each filenames, and not the full path.


source

ImageDataLoaders.from_name_re

 ImageDataLoaders.from_name_re (path, fnames, pat, bs:int=64,
                                val_bs:int=None, shuffle:bool=True,
                                device=None)

Create from the name attrs of fnames in paths with re expression pat

Type Default Details
path str | pathlib.Path . Path to put in DataLoaders
fnames
pat
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

The validation set is a random subset of valid_pct, optionally created with seed for reproducibility. This method does the same as ImageDataLoaders.from_path_re except pat is applied to the name of each filenames, and not the full path.


source

ImageDataLoaders.from_df

 ImageDataLoaders.from_df (df, path='.', valid_pct=0.2, seed=None,
                           fn_col=0, folder=None, suff='', label_col=1,
                           label_delim=None, y_block=None, valid_col=None,
                           item_tfms=None, batch_tfms=None, img_cls=<class
                           'fastai.vision.core.PILImage'>, bs:int=64,
                           val_bs:int=None, shuffle:bool=True,
                           device=None)

Create from df using fn_col and label_col

Type Default Details
df
path str | pathlib.Path . Path to put in DataLoaders
valid_pct float 0.2
seed NoneType None
fn_col int 0
folder NoneType None
suff str
label_col int 1
label_delim NoneType None
y_block NoneType None
valid_col NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

The validation set is a random subset of valid_pct, optionally created with seed for reproducibility. Alternatively, if your df contains a valid_col, give its name or its index to that argument (the column should have True for the elements going to the validation set).

You can add an additional folder to the filenames in df if they should not be concatenated directly to path. If they do not contain the proper extensions, you can add suff. If your label column contains multiple labels on each row, you can use label_delim to warn the library you have a multi-label problem.

y_block should be passed when the task automatically picked by the library is wrong, you should then give CategoryBlock, MultiCategoryBlock or RegressionBlock. For more advanced uses, you should use the data block API.

The tiny mnist example from before also contains a version in a dataframe:

path = untar_data(URLs.MNIST_TINY)
df = pd.read_csv(path/'labels.csv')
df.head()
name label
0 train/3/7463.png 3
1 train/3/9829.png 3
2 train/3/7881.png 3
3 train/3/8065.png 3
4 train/3/7046.png 3

Here is how to load it using ImageDataLoaders.from_df:

dls = ImageDataLoaders.from_df(df, path)
/home/jhoward/git/fastai/fastai/data/transforms.py:212: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
  o = r[c] if isinstance(c, int) or not c in getattr(r, '_fields', []) else getattr(r, c)

Here is another example with a multi-label problem:

path = untar_data(URLs.PASCAL_2007)
df = pd.read_csv(path/'train.csv')
df.head()
100.00% [1637801984/1637796771 03:22<00:00]
fname labels is_valid
0 000005.jpg chair True
1 000007.jpg car True
2 000009.jpg horse person True
3 000012.jpg car False
4 000016.jpg bicycle True
dls = ImageDataLoaders.from_df(df, path, folder='train', valid_col='is_valid')
/home/jhoward/git/fastai/fastai/data/transforms.py:212: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
  o = r[c] if isinstance(c, int) or not c in getattr(r, '_fields', []) else getattr(r, c)

Note that can also pass 2 to valid_col (the index, starting with 0).


source

ImageDataLoaders.from_csv

 ImageDataLoaders.from_csv (path, csv_fname='labels.csv', header='infer',
                            delimiter=None, quoting=0, valid_pct=0.2,
                            seed=None, fn_col=0, folder=None, suff='',
                            label_col=1, label_delim=None, y_block=None,
                            valid_col=None, item_tfms=None,
                            batch_tfms=None, img_cls=<class
                            'fastai.vision.core.PILImage'>, bs:int=64,
                            val_bs:int=None, shuffle:bool=True,
                            device=None)

Create from path/csv_fname using fn_col and label_col

Type Default Details
path str | pathlib.Path . Path to put in DataLoaders
csv_fname str labels.csv
header str infer
delimiter NoneType None
quoting int 0
valid_pct float 0.2
seed NoneType None
fn_col int 0
folder NoneType None
suff str
label_col int 1
label_delim NoneType None
y_block NoneType None
valid_col NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

Same as ImageDataLoaders.from_df after loading the file with header and delimiter.

Here is how to load the same dataset as before with this method:

dls = ImageDataLoaders.from_csv(path, 'train.csv', folder='train', valid_col='is_valid')
/home/jhoward/git/fastai/fastai/data/transforms.py:212: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
  o = r[c] if isinstance(c, int) or not c in getattr(r, '_fields', []) else getattr(r, c)

source

ImageDataLoaders.from_lists

 ImageDataLoaders.from_lists (path, fnames, labels, valid_pct=0.2,
                              seed:int=None, y_block=None, item_tfms=None,
                              batch_tfms=None, img_cls=<class
                              'fastai.vision.core.PILImage'>, bs:int=64,
                              val_bs:int=None, shuffle:bool=True,
                              device=None)

Create from list of fnames and labels in path

Type Default Details
path str | pathlib.Path . Path to put in DataLoaders
fnames
labels
valid_pct float 0.2
seed int None
y_block NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

The validation set is a random subset of valid_pct, optionally created with seed for reproducibility. y_block can be passed to specify the type of the targets.

path = untar_data(URLs.PETS)
fnames = get_image_files(path/"images")
labels = ['_'.join(x.name.split('_')[:-1]) for x in fnames]
dls = ImageDataLoaders.from_lists(path, fnames, labels)
Downloading a new version of this dataset...
89.67% [727859200/811706944 02:12<00:15]

source

SegmentationDataLoaders

 SegmentationDataLoaders (*loaders, path:str|pathlib.Path='.',
                          device=None)

Basic wrapper around several DataLoaders with factory methods for segmentation problems


source

SegmentationDataLoaders.from_label_func

 SegmentationDataLoaders.from_label_func (path, fnames, label_func,
                                          valid_pct=0.2, seed=None,
                                          codes=None, item_tfms=None,
                                          batch_tfms=None, img_cls=<class
                                          'fastai.vision.core.PILImage'>,
                                          bs:int=64, val_bs:int=None,
                                          shuffle:bool=True, device=None)

Create from list of fnames in paths with label_func.

Type Default Details
path str | pathlib.Path . Path to put in DataLoaders
fnames
label_func
valid_pct float 0.2
seed NoneType None
codes NoneType None
item_tfms NoneType None
batch_tfms NoneType None
img_cls BypassNewMeta PILImage
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

The validation set is a random subset of valid_pct, optionally created with seed for reproducibility. codes contain the mapping index to label.

path = untar_data(URLs.CAMVID_TINY)
fnames = get_image_files(path/'images')
def label_func(x): return path/'labels'/f'{x.stem}_P{x.suffix}'
codes = np.loadtxt(path/'codes.txt', dtype=str)
    
dls = SegmentationDataLoaders.from_label_func(path, fnames, label_func, codes=codes)