Tabular data

Helper functions to get data in a DataLoaders in the tabular application and higher class TabularDataLoaders

The main class to get your data ready for model training is TabularDataLoaders and its factory methods. Checkout the tabular tutorial for examples of use.


source

TabularDataLoaders

 TabularDataLoaders (*loaders, path:str|pathlib.Path='.', device=None)

Basic wrapper around several DataLoaders with factory methods for tabular data

This class should not be used directly, one of the factory methods should be preferred instead. All those factory methods accept as arguments:

  • cat_names: the names of the categorical variables
  • cont_names: the names of the continuous variables
  • y_names: the names of the dependent variables
  • y_block: the TransformBlock to use for the target
  • valid_idx: the indices to use for the validation set (defaults to a random split otherwise)
  • bs: the batch size
  • val_bs: the batch size for the validation DataLoader (defaults to bs)
  • shuffle_train: if we shuffle the training DataLoader or not
  • n: overrides the numbers of elements in the dataset
  • device: the PyTorch device to use (defaults to default_device())

source

TabularDataLoaders.from_df

 TabularDataLoaders.from_df (df:pd.DataFrame, path:str|Path='.',
                             procs:list=None, cat_names:list=None,
                             cont_names:list=None, y_names:list=None,
                             y_block:TransformBlock=None,
                             valid_idx:list=None, bs:int=64,
                             shuffle_train:bool=None, shuffle:bool=True,
                             val_shuffle:bool=False, n:int=None,
                             device:torch.device=None,
                             drop_last:bool=None, val_bs:int=None)

Create TabularDataLoaders from df in path using procs

Type Default Details
df pd.DataFrame
path str | Path . Location of df, defaults to current working directory
procs list None List of TabularProcs
cat_names list None Column names pertaining to categorical variables
cont_names list None Column names pertaining to continuous variables
y_names list None Names of the dependent variables
y_block TransformBlock None TransformBlock to use for the target(s)
valid_idx list None List of indices to use for the validation set, defaults to a random split
bs int 64 Batch size
shuffle_train bool None (Deprecated, use shuffle) Shuffle training DataLoader
shuffle bool True Shuffle training DataLoader
val_shuffle bool False Shuffle validation DataLoader
n int None Size of Datasets used to create DataLoader
device device None Device to put DataLoaders
drop_last bool None Drop last incomplete batch, defaults to shuffle
val_bs int None Validation batch size, defaults to bs

Let’s have a look on an example with the adult dataset:

path = untar_data(URLs.ADULT_SAMPLE)
df = pd.read_csv(path/'adult.csv', skipinitialspace=True)
df.head()
age workclass fnlwgt education education-num marital-status occupation relationship race sex capital-gain capital-loss hours-per-week native-country salary
0 49 Private 101320 Assoc-acdm 12.0 Married-civ-spouse NaN Wife White Female 0 1902 40 United-States >=50k
1 44 Private 236746 Masters 14.0 Divorced Exec-managerial Not-in-family White Male 10520 0 45 United-States >=50k
2 38 Private 96185 HS-grad NaN Divorced NaN Unmarried Black Female 0 0 32 United-States <50k
3 38 Self-emp-inc 112847 Prof-school 15.0 Married-civ-spouse Prof-specialty Husband Asian-Pac-Islander Male 0 0 40 United-States >=50k
4 42 Self-emp-not-inc 82297 7th-8th NaN Married-civ-spouse Other-service Wife Black Female 0 0 50 United-States <50k
cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race']
cont_names = ['age', 'fnlwgt', 'education-num']
procs = [Categorify, FillMissing, Normalize]
dls = TabularDataLoaders.from_df(df, path, procs=procs, cat_names=cat_names, cont_names=cont_names, 
                                 y_names="salary", valid_idx=list(range(800,1000)), bs=64)
dls.show_batch()
workclass education marital-status occupation relationship race education-num_na age fnlwgt education-num salary
0 Private HS-grad Married-civ-spouse Adm-clerical Husband White False 24.0 121312.998272 9.0 <50k
1 Private HS-grad Never-married Other-service Not-in-family White False 19.0 198320.000325 9.0 <50k
2 Private Bachelors Married-civ-spouse Sales Husband White False 66.0 169803.999308 13.0 >=50k
3 Private HS-grad Divorced Adm-clerical Unmarried White False 40.0 799280.980929 9.0 <50k
4 Local-gov 10th Never-married Other-service Own-child White False 18.0 55658.003629 6.0 <50k
5 Private HS-grad Never-married Handlers-cleaners Other-relative White False 30.0 375827.003847 9.0 <50k
6 Private Some-college Never-married Handlers-cleaners Own-child White False 20.0 173723.999335 10.0 <50k
7 ? Some-college Never-married ? Own-child White False 21.0 107800.997986 10.0 <50k
8 Private HS-grad Never-married Handlers-cleaners Own-child White False 19.0 263338.000072 9.0 <50k
9 Private Some-college Married-civ-spouse Tech-support Husband White False 35.0 194590.999986 10.0 <50k

source

TabularDataLoaders.from_csv

 TabularDataLoaders.from_csv (csv:str|Path|io.BufferedReader,
                              skipinitialspace:bool=True,
                              path:str|Path='.', procs:list=None,
                              cat_names:list=None, cont_names:list=None,
                              y_names:list=None,
                              y_block:TransformBlock=None,
                              valid_idx:list=None, bs:int=64,
                              shuffle_train:bool=None, shuffle:bool=True,
                              val_shuffle:bool=False, n:int=None,
                              device:torch.device=None,
                              drop_last:bool=None, val_bs:int=None)

Create TabularDataLoaders from csv file in path using procs

Type Default Details
csv str | Path | io.BufferedReader A csv of training data
skipinitialspace bool True Skip spaces after delimiter
path str | Path . Location of df, defaults to current working directory
procs list None List of TabularProcs
cat_names list None Column names pertaining to categorical variables
cont_names list None Column names pertaining to continuous variables
y_names list None Names of the dependent variables
y_block TransformBlock None TransformBlock to use for the target(s)
valid_idx list None List of indices to use for the validation set, defaults to a random split
bs int 64 Batch size
shuffle_train bool None (Deprecated, use shuffle) Shuffle training DataLoader
shuffle bool True Shuffle training DataLoader
val_shuffle bool False Shuffle validation DataLoader
n int None Size of Datasets used to create DataLoader
device device None Device to put DataLoaders
drop_last bool None Drop last incomplete batch, defaults to shuffle
val_bs int None Validation batch size, defaults to bs
cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race']
cont_names = ['age', 'fnlwgt', 'education-num']
procs = [Categorify, FillMissing, Normalize]
dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path, procs=procs, cat_names=cat_names, cont_names=cont_names, 
                                  y_names="salary", valid_idx=list(range(800,1000)), bs=64)

source

TabularDataLoaders.test_dl

 TabularDataLoaders.test_dl (test_items, rm_type_tfms=None,
                             process:bool=True, inplace:bool=False, bs=16,
                             shuffle=False, after_batch=None,
                             num_workers=0, verbose:bool=False,
                             do_setup:bool=True, pin_memory=False,
                             timeout=0, batch_size=None, drop_last=False,
                             indexed=None, n=None, device=None,
                             persistent_workers=False,
                             pin_memory_device='', wif=None,
                             before_iter=None, after_item=None,
                             before_batch=None, after_iter=None,
                             create_batches=None, create_item=None,
                             create_batch=None, retain=None,
                             get_idxs=None, sample=None, shuffle_fn=None,
                             do_batch=None)

Create test TabDataLoader from test_items using validation procs

Type Default Details
test_items Items to create new test TabDataLoader formatted the same as the training data
rm_type_tfms NoneType None Number of Transforms to be removed from procs
process bool True Apply validation TabularProcs to test_items immediately
inplace bool False Keep separate copy of original test_items in memory if False
bs int 64 Size of batch
shuffle bool False Whether to shuffle data
after_batch NoneType None
num_workers int None Number of CPU cores to use in parallel (default: All available up to 16)
verbose bool False Whether to print verbose logs
do_setup bool True Whether to run setup() for batch transform(s)
pin_memory bool False
timeout int 0
batch_size NoneType None
drop_last bool False
indexed NoneType None
n NoneType None
device NoneType None
persistent_workers bool False
pin_memory_device str
wif NoneType None
before_iter NoneType None
after_item NoneType None
before_batch NoneType None
after_iter NoneType None
create_batches NoneType None
create_item NoneType None
create_batch NoneType None
retain NoneType None
get_idxs NoneType None
sample NoneType None
shuffle_fn NoneType None
do_batch NoneType None

External structured data files can contain unexpected spaces, e.g. after a comma. We can see that in the first row of adult.csv "49, Private,101320, ...". Often trimming is needed. Pandas has a convenient parameter skipinitialspace that is exposed by TabularDataLoaders.from_csv(). Otherwise category labels use for inference later such as workclass:Private will be categorized wrongly to 0 or "#na#" if training label was read as " Private". Let’s test this feature.

test_data = {
    'age': [49], 
    'workclass': ['Private'], 
    'fnlwgt': [101320],
    'education': ['Assoc-acdm'], 
    'education-num': [12.0],
    'marital-status': ['Married-civ-spouse'], 
    'occupation': [''],
    'relationship': ['Wife'],
    'race': ['White'],
}
input = pd.DataFrame(test_data)
tdl = dls.test_dl(input)

test_ne(0, tdl.dataset.iloc[0]['workclass'])