Collaborative filtering

Tools to quickly get the data and train models suitable for collaborative filtering

This module contains all the high-level functions you need in a collaborative filtering application to assemble your data, get a model and train it with a Learner. We will go other those in order but you can also check the collaborative filtering tutorial.

Gather the data


source

TabularCollab

 TabularCollab (df, procs=None, cat_names=None, cont_names=None,
                y_names=None, y_block=None, splits=None, do_setup=True,
                device=None, inplace=False, reduce_memory=True)

Instance of TabularPandas suitable for collaborative filtering (with no continuous variable)

This is just to use the internal of the tabular application, don’t worry about it.


source

CollabDataLoaders

 CollabDataLoaders (*loaders, path:str|pathlib.Path='.', device=None)

Base DataLoaders for collaborative filtering.

This class should not be used directly, one of the factory methods should be preferred instead. All those factory methods accept as arguments:

  • valid_pct: the random percentage of the dataset to set aside for validation (with an optional seed)
  • user_name: the name of the column containing the user (defaults to the first column)
  • item_name: the name of the column containing the item (defaults to the second column)
  • rating_name: the name of the column containing the rating (defaults to the third column)
  • path: the folder where to work
  • bs: the batch size
  • val_bs: the batch size for the validation DataLoader (defaults to bs)
  • shuffle_train: if we shuffle the training DataLoader or not
  • device: the PyTorch device to use (defaults to default_device())

source

CollabDataLoaders.from_df

 CollabDataLoaders.from_df (ratings, valid_pct=0.2, user_name=None,
                            item_name=None, rating_name=None, seed=None,
                            path='.', bs:int=64, val_bs:int=None,
                            shuffle:bool=True, device=None)

Create a DataLoaders suitable for collaborative filtering from ratings.

Type Default Details
ratings
valid_pct float 0.2
user_name NoneType None
item_name NoneType None
rating_name NoneType None
seed NoneType None
path str | Path . Path to put in DataLoaders
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders

Let’s see how this works on an example:

path = untar_data(URLs.ML_SAMPLE)
ratings = pd.read_csv(path/'ratings.csv')
ratings.head()
110.72% [57344/51790 00:00<00:00]
userId movieId rating timestamp
0 73 1097 4.0 1255504951
1 561 924 3.5 1172695223
2 157 260 3.5 1291598691
3 358 1210 5.0 957481884
4 130 316 2.0 1138999234
dls = CollabDataLoaders.from_df(ratings, bs=64)
dls.show_batch()
userId movieId rating
0 580 736 2.0
1 509 356 4.0
2 105 480 3.0
3 518 595 5.0
4 111 527 4.0
5 384 589 5.0
6 607 2918 3.5
7 460 1291 4.0
8 268 1270 5.0
9 56 586 4.0

source

CollabDataLoaders.from_csv

 CollabDataLoaders.from_csv (csv, valid_pct=0.2, user_name=None,
                             item_name=None, rating_name=None, seed=None,
                             path='.', bs:int=64, val_bs:int=None,
                             shuffle:bool=True, device=None)

Create a DataLoaders suitable for collaborative filtering from csv.

Type Default Details
csv
valid_pct float 0.2
user_name NoneType None
item_name NoneType None
rating_name NoneType None
seed NoneType None
path str | Path . Path to put in DataLoaders
bs int 64 Size of batch
val_bs int None Size of batch for validation DataLoader
shuffle bool True Whether to shuffle data
device NoneType None Device to put DataLoaders
dls = CollabDataLoaders.from_csv(path/'ratings.csv', bs=64)

Models

fastai provides two kinds of models for collaborative filtering: a dot-product model and a neural net.


source

EmbeddingDotBias

 EmbeddingDotBias (n_factors, n_users, n_items, y_range=None)

Base dot model for collaborative filtering.

The model is built with n_factors (the length of the internal vectors), n_users and n_items. For a given user and item, it grabs the corresponding weights and bias and returns

torch.dot(user_w, item_w) + user_b + item_b

Optionally, if y_range is passed, it applies a SigmoidRange to that result.

x,y = dls.one_batch()
model = EmbeddingDotBias(50, len(dls.classes['userId']), len(dls.classes['movieId']), y_range=(0,5)
                        ).to(x.device)
out = model(x)
assert (0 <= out).all() and (out <= 5).all()

source

EmbeddingDotBias.from_classes

 EmbeddingDotBias.from_classes (n_factors, classes, user=None, item=None,
                                y_range=None)

Build a model with n_factors by inferring n_users and n_items from classes

y_range is passed to the main init. user and item are the names of the keys for users and items in classes (default to the first and second key respectively). classes is expected to be a dictionary key to list of categories like the result of dls.classes in a CollabDataLoaders:

dls.classes
{'userId': ['#na#', 15, 17, 19, 23, 30, 48, 56, 73, 77, 78, 88, 95, 102, 105, 111, 119, 128, 130, 134, 150, 157, 165, 176, 187, 195, 199, 212, 213, 220, 232, 239, 242, 243, 247, 262, 268, 285, 292, 294, 299, 306, 311, 312, 313, 346, 353, 355, 358, 380, 382, 384, 387, 388, 402, 405, 407, 423, 427, 430, 431, 439, 452, 457, 460, 461, 463, 468, 472, 475, 480, 481, 505, 509, 514, 518, 529, 534, 537, 544, 547, 561, 564, 574, 575, 577, 580, 585, 587, 596, 598, 605, 607, 608, 615, 624, 648, 652, 654, 664, 665],
 'movieId': ['#na#', 1, 10, 32, 34, 39, 47, 50, 110, 150, 153, 165, 231, 253, 260, 293, 296, 316, 318, 344, 356, 357, 364, 367, 377, 380, 457, 480, 500, 527, 539, 541, 586, 587, 588, 589, 590, 592, 593, 595, 597, 608, 648, 733, 736, 778, 780, 858, 924, 1036, 1073, 1089, 1097, 1136, 1193, 1196, 1197, 1198, 1200, 1206, 1210, 1213, 1214, 1221, 1240, 1265, 1270, 1291, 1580, 1617, 1682, 1704, 1721, 1732, 1923, 2028, 2396, 2571, 2628, 2716, 2762, 2858, 2918, 2959, 2997, 3114, 3578, 3793, 4226, 4306, 4886, 4963, 4973, 4993, 5349, 5952, 6377, 6539, 7153, 8961, 58559]}

Let’s see how it can be used in practice:

model = EmbeddingDotBias.from_classes(50, dls.classes,  y_range=(0,5)
                                     ).to(x.device)
out = model(x)
assert (0 <= out).all() and (out <= 5).all()

Two convenience methods are added to easily access the weights and bias when a model is created with EmbeddingDotBias.from_classes:


source

EmbeddingDotBias.weight

 EmbeddingDotBias.weight (arr, is_item=True)

Weight for item or user (based on is_item) for all in arr

The elements of arr are expected to be class names (which is why the model needs to be created with EmbeddingDotBias.from_classes)

mov = dls.classes['movieId'][42] 
w = model.weight([mov])
test_eq(w, model.i_weight(tensor([42])))

source

EmbeddingDotBias.bias

 EmbeddingDotBias.bias (arr, is_item=True)

Bias for item or user (based on is_item) for all in arr

The elements of arr are expected to be class names (which is why the model needs to be created with EmbeddingDotBias.from_classes)

mov = dls.classes['movieId'][42] 
b = model.bias([mov])
test_eq(b, model.i_bias(tensor([42])))

source

EmbeddingNN

 EmbeddingNN (emb_szs, layers, ps:float|MutableSequence=None,
              embed_p:float=0.0, y_range=None, use_bn:bool=True,
              bn_final:bool=False, bn_cont:bool=True,
              act_cls=ReLU(inplace=True), lin_first:bool=True)

Subclass TabularModel to create a NN suitable for collaborative filtering.

emb_szs should be a list of two tuples, one for the users, one for the items, each tuple containing the number of users/items and the corresponding embedding size (the function get_emb_sz can give a good default). All the other arguments are passed to TabularModel.

emb_szs = get_emb_sz(dls.train_ds, {})
model = EmbeddingNN(emb_szs, [50], y_range=(0,5)
                   ).to(x.device)
out = model(x)
assert (0 <= out).all() and (out <= 5).all()

Create a Learner

The following function lets us quickly create a Learner for collaborative filtering from the data.


source

collab_learner

 collab_learner (dls, n_factors=50, use_nn=False, emb_szs=None,
                 layers=None, config=None, y_range=None, loss_func=None,
                 opt_func:Optimizer|OptimWrapper=<function Adam>,
                 lr:float|slice=0.001, splitter:callable=<function
                 trainable_params>,
                 cbs:Callback|MutableSequence|None=None,
                 metrics:callable|MutableSequence|None=None,
                 path:str|Path|None=None, model_dir:str|Path='models',
                 wd:float|int|None=None, wd_bn_bias:bool=False,
                 train_bn:bool=True, moms:tuple=(0.95, 0.85, 0.95),
                 default_cbs:bool=True)

Create a Learner for collaborative filtering on dls.

Type Default Details
dls DataLoaders DataLoaders containing fastai or PyTorch DataLoaders
n_factors int 50
use_nn bool False
emb_szs NoneType None
layers NoneType None
config NoneType None
y_range NoneType None
loss_func callable | None None Loss function. Defaults to dls loss
opt_func Optimizer | OptimWrapper Adam Optimization function for training
lr float | slice 0.001 Default learning rate
splitter callable trainable_params Split model into parameter groups. Defaults to one parameter group
cbs Callback | MutableSequence | None None Callbacks to add to Learner
metrics callable | MutableSequence | None None Metrics to calculate on validation set
path str | Path | None None Parent directory to save, load, and export models. Defaults to dls path
model_dir str | Path models Subdirectory to save and load models
wd float | int | None None Default weight decay
wd_bn_bias bool False Apply weight decay to normalization and bias parameters
train_bn bool True Train frozen normalization layers
moms tuple (0.95, 0.85, 0.95) Default momentum for schedulers
default_cbs bool True Include default Callbacks

If use_nn=False, the model used is an EmbeddingDotBias with n_factors and y_range. Otherwise, it’s a EmbeddingNN for which you can pass emb_szs (will be inferred from the dls with get_emb_sz if you don’t provide any), layers (defaults to [n_factors]) y_range, and a config that you can create with tabular_config to customize your model.

loss_func will default to MSELossFlat and all the other arguments are passed to Learner.

learn = collab_learner(dls, y_range=(0,5))
learn.fit_one_cycle(1)
epoch train_loss valid_loss time
0 2.521979 2.541627 00:00